As you mentioned, we will use <span>Equipartition Theorem.
</span><span>H2 has 5 degrees of freedom; 3 translations and 2 rotation
</span>Therefore:
Internal energy = (5/2) nRT
You just substitute in the equation with the values of R and T and calculate the internal energy as follows:
Internal energy = (5/2) x 2 x <span>8.314 x 308 = 32.0089 x 10^3 J</span>
Answer:
The time taken to stop the box equals 1.33 seconds.
Explanation:
Since frictional force always acts opposite to the motion of the box we can find the acceleration that the force produces using newton's second law of motion as shown below:

Given mass of box = 5.0 kg
Frictional force = 30 N
thus

Now to find the time that the box requires to stop can be calculated by first equation of kinematics
The box will stop when it's final velocity becomes zero

Here acceleration is taken as negative since it opposes the motion of the box since frictional force always opposes motion.
I think the answer is 4) All of the above!! :)
Answer:
A)
B)
Explanation:
Given that
Force = F
Increase in Kinetic energy = 

we know that
Work done by all the forces =change in the kinetic energy
a)
Lets distance = d
We know work done by force F
W= F .d
F.d=ΔKE


b)
If the force become twice
F' = 2 F
F'.d=ΔKE'
2 F .d = ΔKE' ( F.d =Δ KE)
2ΔKE = ΔKE'

Therefore the final kinetic energy will become the twice if the force become twice.