1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
9

Which has more momentum, a speeding baseball or an ocean liner at rest in a harbor?

Physics
1 answer:
uranmaximum [27]3 years ago
4 0
Momentum is (mass) times (speed), so nothing that is at rest has any momentum. If the battleship is at rest, then a mosquito in flight, a leaf falling from a tree, and your speedy baseball each have more momentum than the ship has.
You might be interested in
Four weightlifters (A-D) enter a competition. The mass, distance, and time of their lifts are shown in the table.
siniylev [52]

Let Pa, Pb, Pc, and Pd be the powers delivered by weightlifters A, B, C, and D, respectively.

Use this equation to determine each power value:

P = W÷Δt

P is the power, W is the work done by the weightlifter, and Δt is the elapsed time.

A) Determining Pa:

Pa = W÷Δt

The weightlifter does work to lift the weight up a certain distance. Therefore the work done is equal to the weight's gain in gravitational potential energy. The equation for gravitational PE is

PE = mgh

PE is the potential energy, m is the mass of the weight, g is the acceleration of objects due to earth's gravity, and h is the distance the weight was lifted.

We can equate W = PE = mgh, therefore we can make the following substitution:

Pa = mgh÷Δt

Given values:

m = 100.0kg

g = 9.81m/s²

h = 2.25m

Δt = 0.151s

Plug in the values and solve for Pa

Pa = 100.0×9.81×2.25÷0.151

<u>Pa = 14600W</u> (watt is the SI derived unit of power)

B) Determining Pb:

Let us use our new equation derived in part A to solve for Pb:

Pb = mgh÷Δt

Given values:

m = 150.0kg

g = 9.81m/s²

h = 1.76m

Δt = 0.052s

Plug in the values and solve for Pb

Pb = 150.0×9.81×1.76÷0.052

<u>Pb = 49800W</u>

C) Determining Pc:

Pc = mgh÷Δt

Given values:

m = 200.0kg

g = 9.81m/s²

h = 1.50m

Δt = 0.217s

Plug in the values and solve for Pc

Pc = 200.0×9.81×1.50÷0.217

<u>Pc = 13600W</u>

D) Determining Pd:

Pd = mgh÷Δt

Given values:

m = 250.0kg

g = 9.81m/s²

h = 1.25m

Δt = 0.206s

Plug in the values and solve for Pd

Pd = 250.0×9.81×1.25÷0.206

<u>Pd = 14900W</u>

Compare the following power values:

Pa = 14600W, Pb = 49800W, Pc = 13600W, Pd = 14900W

Pc is the lowest value.

Therefore, weightlifter C delivers the least power.

7 0
3 years ago
What happens with alpha, beta, and gamma radiation?
tresset_1 [31]
I'm sorry but I don't really understand the question. What is the quest actually asking???
4 0
3 years ago
Physics double pivot question​
andriy [413]

Explanation:

Assuming the wall is frictionless, there are four forces acting on the ladder.

Weight pulling down at the center of the ladder (mg).

Reaction force pushing to the left at the wall (Rw).

Reaction force pushing up at the foot of the ladder (Rf).

Friction force pushing to the right at the foot of the ladder (Ff).

(a) Calculate the reaction force at the wall.

Take the sum of the moments about the foot of the ladder.

∑τ = Iα

Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0

Rw (3.0 sin 60°) = mg (1.5 cos 60°)

Rw = mg / (2 tan 60°)

Rw = (10 kg) (9.8 m/s²) / (2√3)

Rw = 28 N

(b) State the friction at the foot of the ladder.

Take the sum of the forces in the x direction.

∑F = ma

Ff − Rw = 0

Ff = Rw

Ff = 28 N

(c) State the reaction at the foot of the ladder.

Take the sum of the forces in the y direction.

∑F = ma

Rf − mg = 0

Rf = mg

Rf = 98 N

3 0
3 years ago
A piano tuner is using a 392 Hz tuning fork to tune the wire for a G-Natural note. She hears 4 beats per second. What are the tw
inysia [295]

A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

f_{beat} =| f_2\pm f_1 |

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be

f_{beat} =|392+4|= 396Hz

f_{beat} =|392-4|=388Hz

Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz

5 0
3 years ago
What travels around the earth but stays in one spot?
mina [271]
The sun?? It stays in one spot, but from our point of view, it travels around the earth...
7 0
3 years ago
Other questions:
  • Two resistors of 5.0 and 9.0 ohms are connected inparallel. A
    12·1 answer
  • Which statement correctly distinguishes between all mechanical and all electromagnetic waves?
    11·2 answers
  • A dependent variable is also called a _____?
    13·1 answer
  • A wind turbine takes in energy from wind with the goal of converting it into electrical energy. Much of the wind energy is also
    10·2 answers
  • BWhat Do You Get When You Multiply An Object's mass times the acceleration?
    13·1 answer
  • A trolley has a mass of 1.2 kg and a speed of 4.5 m/s. The trolley crashes into a stationary trolley of mass 0.8 kg. On impact t
    12·1 answer
  • How can two atoms of the same chemical element be different?
    10·1 answer
  • Hello please help i’ll give brainliest
    15·2 answers
  • A truck accelerates on a highway from rest to 216 m/s in 10s. What is the magnitude of acceleration?
    7·1 answer
  • Given the velocity v= ds dt and the initial position of a body moving along a coordinate line, find the body's position at time
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!