Answer:
Explanation:
Mass =11.2kg
Constant velocity =3.3m/s
μk=0.25
Since the body is moving in constant velocity, then the acceleration is zero(0).
ΣF = Σ(ma)
The normal force acting on the body is upward and the weight is acting downward
Then ΣFy=0
Therefore, N=W
W=mg=11.2×9.8=109.76N
So, N=W=109.76N
Frictional force is given as
Fr=μkN
Fr=0.25×109.76
Fr=27.44N
Frictional force acting against the motion is 27.44N
Then the forward force moving the body forward
ΣF = Σ(ma)
Since a = 0
Then,
ΣF = 0
F-Fr=0
Then F=Fr
So the force moving the body forward is 27.44N
Real images can be either upright or inverted. Real images can be magnified in size, reduced in size or the same size as the object. Real images can be formed by concave, convex and plane mirrors. Real images are not virtual; thus you could never see them when sighting in a mirror.
Answer: conduction :it transfers heat between objects that are in direct contact with eachother
We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>
The increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Kinetic energy of a particle is directly proportional to its temperature.
A ball initially at rest acquires kinetic energy when an external force is applied to it. As the person strikes the ball with a bat, the ball gains momentum which increases its kinetic energy of the ball.
Temperature on the other hand, is the measure of the average kinetic energy of a particle. Consequently, as the kinetic energy of the ball increases, the temperature of the ball increases as well.
Thus, we can conclude that the increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Learn more here: brainly.com/question/18833622