Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R
number 2 because the curve demstrates the crest GOOD LUCK i hope i got you the correct answer if not sorry
Answer:
D
Explanation:
First we define our variables
V0=29.4
a=-9.8
V=0
We have to find the maximum displacement , which I will define as X
We use formula v^2=v0^2+2aX
All we do is substitute our values
0=29.4^2-19.6X
29.4^2=19.6X
X=29.4^2/19.6=44.1
Answer:
thank for making me give up on life
Explanation:
I thought the stuff I had was hard wth is even that