<span>Transformed into potential energy</span>
The shape of which the pebble sized particles that makes up the rock is more of a rounded shape as they are bits and in circular formation, depicting it to be more rounder in which are particles that is made up in a rock. They can be in pebble sized or much more smaller than that when in bits.
Answer:
1.19 m/s²
Explanation:
The frequency of the wave generated in the string in the first experiment is f = n/2l√T/μ were T = tension in string = mg were m = 1.30 kg weight = 1300 g , μ = mass per unit length of string = 1.01 g/m. l = length of string to pulley = l₀/2 were l₀ = lent of string. Since f is the second harmonic, n = 2, so
f = 2/2(l₀/2)√mg/μ = 2(√mg/μ)/l₀ (1)
Also, for the second experiment, the period of the wave in the string is T = 2π√l₀/g. From (1) l₀ = 2(√mg/μ)/f and from (2) l₀ = T²g/4π²
Equating (1) and (2) we ave
2(√mg/μ)/f = T²g/4π²
Making g subject of the formula
g = 2π√(2√(m/μ)/f)/T
The period T = 316 s/100 = 3.16 s
Substituting the other values into , we have
g = 2π√(2√(1300 g/1.01 g/m)/200 Hz)/3.16
g = 2π√(2 × 35.877/200 Hz)/3.16
g = 2π√(71.753/200 Hz)/3.16
g = 2π√(0.358)/3.16
g = 2π × 0.599/3.16
g = 1.19 m/s²
<span>The answers are:
bulb, motor, buzzer and swtich.As seen in the picture attached,
The electric current leaves the battery passes through
the bulb. It then travels through the
motor, next through the
buzzer and finally passes through the
switch before returning to the battery.</span>
Answer:
<h2>250 m/s</h2>
Explanation:
The speed of the car can be found by using the formula
<h2>v = a × t</h2>
where
a is the acceleration
v is the speed
t is the time
From the question we have
v = 10 × 25
We have the final answer as
<h3>250 m/s</h3>
Hope this helps you