Oh wow!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
Answer:
potential energy is the energy of an object that is not moving
Explanation:
example a skateboarder stands at the top of the ramp he has no kinetic energy but alot of potential energy when he goes down the ramp he loses the potential energy he has and it transforms into kinetic energy
brinliest plz
C. Hypothesis
The hypothesis is presented as an explanation of the observed results.