Answer:
2.5 kg
Explanation:
We can solve the problem by using Newton's second law:

where
F is the net force acting on the train
m is the mass of the train
a is the acceleration
For the toy train in the problem,
F = 3.0 N
a = 1.2 m/s^2
So we can solve the formula for m, to find the mass of the train:

12344
yu j fjfjf hfjfuf jfjjfjfi jfjfifjf fjfikf
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
C. Magnetism
Very few minerals are magnetic, while streak hardness and specific gravity can be used to identify lots of minerals
The distance is 140 m and the displacement is 140 m E. Displacement can change though. For example, if Dexter walked 140 m east then walked 40 meters west the displacement would be 100 m E. Displacement is just how far away an object is from the start.