Answer:He lifts 2 meters
Explanation:We are trying to find the distance. The formula for distance is W/Force. 50 is our amount of work. 25N is how much force was used. Divide the work bye the force. 50/25=2M
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
Answer:
= 0.0050 M
= 0.0155 M
Explanation:
Initial moles of
= 0.072 mole
Volume of container = 3.9 L
Initial concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.018 M 0
At eqm. conc. (0.018-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[I]^2}{[I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BI%5D%5E2%7D%7B%5BI_2%5D%7D)

we are given : 
Now put all the given values in this expression, we get :


So, the concentrations for the components at equilibrium are:
![[I]=2\times x=2\times 0.0025=0.0050](https://tex.z-dn.net/?f=%5BI%5D%3D2%5Ctimes%20x%3D2%5Ctimes%200.0025%3D0.0050)
![[I_2]=0.018-x=0.018-0.0025=0.0155](https://tex.z-dn.net/?f=%5BI_2%5D%3D0.018-x%3D0.018-0.0025%3D0.0155)
Hence, concentrations of
and
are 0.0050 M ad 0.0155 M respectively.
Force is used to put things in motion you can’t have motion without force!
Even if it just pushing a piece of paper you still use force to put the paper in motion!
The sentence can be completed as follows:
"<span>A major difference between radio waves, visible light, and gamma rays is the
energy of the photons, which results in the different photon frequencies and wavelengths."
In fact, gamma rays have greater energy than visible light and visible light has greater energy than radio waves. The energy E of a photon is related to its frequency, f, by
</span>

<span>where h is the Planck constant. We see from this formula that the higher the frequency, the greater the energy. Instead, the wavelength is inversely proportional to the frequency:
</span>

<span>where c is the speed of light. Since the frequency is directly proportional to the energy, this means that the wavelength is inversely proportional to the energy.</span>