Answer:
-<em>9</em><em>.</em><em>6</em><em>7</em><em>5</em>
Explanation:
<em>c</em><em>o</em><em>r</em><em>r</em><em>e</em><em>c</em><em>t</em><em> </em><em>m</em><em>e</em><em> </em><em>i</em><em>f</em><em> </em><em>i</em><em>m</em><em> </em><em>w</em><em>r</em><em>o</em><em>n</em><em>g</em><em>.</em><em>!</em><em>!</em><em> </em><em />
Answer: 6.75 moles
Explanation:
This is a simple stoichiometry proboe. that I would set up like this:
(13.5 moles CuCI2) (1 mol I2 / 2 moles CuCi2)
That means you all you have to do for this problem is divide by 2 and cancel out the unit moles CuCI2, which leaves you with 6.75 moles I2.
Hope this helps :)
Answer:
0.5133805136 moles.
Explanation:
1 gram of Al2(Co3)3 equals 0.0017112683785004 moles, we need the amount of moles produced in 300 grams of Al2(CO3)3, so we have to multiply 1 gram of Al2(CO3)3 times 300: 0.0017112683785004 x 300, in conclusion,
300 grams of Al2(Co3)3 equals 0.5133805136.
Below are the steps involved in synthesis of Lidocaine.
Answer:
117.3 W is being removed.
Explanation:
The heat removed can be calculated as:
Q = m*c*ΔT
Where m is the mass, c is the specific heat and ΔT is the temperature variation. Because there're two components:
Q = mwater*cwater*ΔT + maluminum*caluminum*ΔT
Q = (mwater*cwater + maluminum*caluminum)*ΔT
Searching in a thermodynamic table:
cwater = 4.184 J/g°C
caluminium = 0.9 J/g°C
In 1 minute, the temperature decreases 2.2°C, so ΔT = -2.2°C
Q = (700*4.184 + 300*0.9) * (-2.2)
Q = -7037.36 J
The rate of energy is the potency (P), which is the heat divided by the time. So, for 1 minute (60 s):
P = -7037.36/60
P = -117.3 J/s
P = -117.3 W
The minus signal indicates that the energy is being removed.