<u>Given:</u>
Mass of solvent water = 4.50 kg
Freezing point of the solution = -11 C
Freezing point depression constant = 1.86 C/m
<u>To determine:</u>
Moles of methanol to be added
<u>Explanation:</u>
The freezing point depression ΔTf is related to the molality m through the constant kf, as follows:
ΔTf = kf*m
where ΔTf = Freezing point of pure solvent (water) - Freezing pt of solution
ΔTf = 0 C - (-11.0 C) = 11.0 C
m = molality = moles of methanol/kg of water = moles of methanol/4.50 kg
11.0 = 1.86 * moles of methanol/4.50
moles of methanol = 26.613 moles
Ans: Thus around 26.6 moles of methanol should be added to 4.50 kg of water.
Answer:
Hi do we translate a this
Explanation:
2 <span>KOH +1 H3AsO4 →1 K2HAsO4 + 2 H2O</span>
Answer:
Rock
Explanation:
Let's calculate the density of each object:
Rock:
Pencil:

Therefore the rock is denser.
Answer:
Group 7A
Explanation:
The group 7A elements consists of the most reactive non-metals on the periodic table.
This group is known as the group of halogens. They consist of element fluorine, chlorine, bromine, iodine and astatine.
- The elements in this group have the highest electronegativity values.
- They have 7 valence electrons and requires just one electron to complete their octets.
- This way, they are highly reactive in their search for that single electron.