To solve for the confidence interval for the population
mean mu, we can use the formula:
Confidence interval = x ± z * s / sqrt (n)
where x is the sample mean, s is the standard deviation,
and n is the sample size
At 95% confidence level, the value of z is equivalent to:
z = 1.96
Therefore substituting the given values into the
equation:
Confidence interval = 3 ± 1.96 * 5.8 / sqrt (51)
Confidence interval = 3 ± 1.59
Confidence interval = 1.41, 4.59
Therefore the population mean mu has an approximate range
or confidence interval from 1.41 kg to 4.59 kg.
136.71-122.57=14.14 BUTTT 136.71+58=194.71
194.71-122.57=72.14
so its 72.14 (if multiple choice question and thats not on there, do 14.14 ONLY IF)
Given 2.50x + 3.50y < 30.
Where x represent the number of hamburgers and y represent the number of cheeseburgers.
Now question is to find the maximum value of hamburgers Ben could have sold when he has sold 4 cheeseburgers.
So, first step is to plug in y=4 in the given inequality. So,
2.50x+3.50(4)<30
2.50x+14 <30
2.50x<30- 14 Subtracting 14 from each sides.
2.50x< 16
Dividing each sides by 2.50.
x<6.4
Now x being number of hamburgers must be an integer , so tha maximum value of x can be 6,
thus x = 6 hamburgers
So, the maximum value of hamburgers Ben could have sold is 6*2.5=$15
Hope this helps!!
Answer:
“Oh, the bells, bells, bells!
What a tale their terror tells
Of Despair!
How they clang, and clash, and roar!
What a horror they outpour
On the bosom of the palpitating air!
Yet the ear it fully knows,
By the twanging,
And the clanging,
How the danger ebbs and flows;
Yet the ear distinctly tells,
In the jangling,
And the wrangling.”
Step-by-step explanation:
Answer:
-14a
Explanation:
We are given 7(b - a) - 7(b + a).
We can distribute the 7’s to get:
7b - 7a - 7b - 7a
Combining like terms, we have:
-14a