Answer:
Atoms=9.033*10^23 atoms
Explanation:
Atoms=no.of miles*Avogadro's no.
Atoms=1.5*6.022*10^23
Atoms=9.033*10^23 atoms
Answer : The volume of oxygen at STP is 112.0665 L
Solution : Given,
The number of moles of
= 5 moles
At STP, the temperature is 273 K and pressure is 1 atm.
Using ideal gas law equation :

where,
P = pressure of gas
V = volume of gas
n = the number of moles
T = temperature of gas
R = gas constant = 0.0821 L atm/mole K (Given)
By rearranging the above ideal gas law equation, we get

Now put all the given values in this expression, we get the value of volume.

Therefore, the volume of oxygen at STP is 112.0665 L
I think the answer would be trenches but I’m sorry if I’m wrong
Answer:
3.861x10⁻⁹ mol Pb⁺²
Explanation:
We can <u>define ppm as mg of Pb²⁺ per liter of water</u>.
We<u> calculate the mass of lead ion in 100 mL of water</u>:
- 100.0 mL ⇒ 100.0 / 1000 = 0.100 L
- 0.100 L * 0.0080 ppm = 8x10⁻⁴ mg Pb⁺²
Now we <u>convert mass of lead to moles</u>, using its molar mass:
- 8x10⁻⁴ mg ⇒ 8x10⁻⁴ / 1000 = 8x10⁻⁷ g
- 8x10⁻⁷ g Pb²⁺ ÷ 207.2 g/mol = 3.861x10⁻⁹ mol Pb⁺²
Answer:
B.
Explanation:
When water separates into hydrogen and oxygen gas, a decomposition reaction is taking place (one substance breaking apart or breaking down into two or more substances).
The law of conservation of mass tells us that mass is not created or destroyed during a chemical reaction, so the total mass will remain the same. This is supported by the diagram on the page, which shows that in the reactants, there are four hydrogen atoms and two oxygen atoms, and this amount is the same on the product side.