Salt solution such as sodium chloride (NaCl) conducts an electric current because it has ions in it that have the freedom to move about in solution. ... On the other hand, sugar solution does not conduct an electric current because sugar (C12H22O11) dissolves in water to produce sugar molecules

Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:

The mixture would contain
if
undergoes no hydrolysis; the solution is of volume
after the mixing. The two species would thus be of concentration
and
, respectively.
Construct a RICE table for the hydrolysis of
under a basic aqueous environment (with a negligible hydronium concentration.)

The question supplied the <em>acid</em> dissociation constant
for acetic acid
; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant
for its conjugate base,
. The following relationship relates the two quantities:

... where the water self-ionization constant
under standard conditions. Thus
. By the definition of
:
![[\text{HAc} (aq)] \cdot [\text{OH}^{-} (aq)] / [\text{Ac}^{-} (aq) ] = K_b = 10^{-pK_{b}}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BHAc%7D%20%28aq%29%5D%20%5Ccdot%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%20%28aq%29%5D%20%2F%20%5B%5Ctext%7BAc%7D%5E%7B-%7D%20%28aq%29%20%5D%20%3D%20K_b%20%3D%20%2010%5E%7B-pK_%7Bb%7D%7D%20)


![[\text{OH}^{-}] = 0.30 +x \approx 0.30 \; \text{M}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%200.30%20%2Bx%20%5Capprox%200.30%20%5C%3B%20%5Ctext%7BM%7D%20)
![pH = pK_{w} - pOH = 14 + \text{log}_{10}[\text{OH}^{-}] = 14 + \text{log}_{10}{0.30} = 13.5](https://tex.z-dn.net/?f=%20pH%20%3D%20pK_%7Bw%7D%20-%20pOH%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%7B0.30%7D%20%3D%2013.5%20)
The correct answer is A, B and C
Answer:
1. No
2. No
3. Yes
4. No
5. Yes
6. No
Explanation:
Use the reactivity series. If the element is above it, it is more reactive. More reactive elements can displace less reactive elements from their compounds.
Answer:
The value of the missing equilibrium constant ( of the first equation) is 1.72
Explanation:
First equation: 2A + B ↔ A2B Kc = TO BE DETERMINED
⇒ The equilibrium expression for this equation is written as: [A2B]/[A]²[B]
Second equation: A2B + B ↔ A2B2 Kc= 16.4
⇒ The equilibrium expression is written as: [A2B2]/[A2B][B]
Third equation: 2A + 2B ↔ A2B2 Kc = 28.2
⇒ The equilibrium expression is written as: [A2B2]/ [A]²[B]²
If we add the first to the second equation
2A + B + B ↔ A2B2 the equilibrium constant Kc will be X(16.4)
But the sum of these 2 equations, is the same as the third equation ( 2A + 2B ↔ A2B2) with Kc = 28.2
So this means: 28.2 = X(16.4)
or X = 28.2/16.4
X = 1.72
with X = Kc of the first equation
The value of the missing equilibrium constant ( of the first equation) is 1.72