Answer:
True
Explanation:
Resource Conservation and Recovery Act (RCRA). 1976 of United States Environmental Protection Agency(EPA) empowers EPA to control the production, transportation, storage, treatment and disposal of hazardous waste. The RCRA act was amended in 1984 and 1986 to include Waste minimization along with appropriate disposal (not in the landfill site) and tackling of petroleum hazardous waste respectively along with other waste.
Based on the data given, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
<h3>How can molar mass of a gas be obtained from density, temperature and pressure?</h3>
The molar mass of a gas can be obtained from density, temperature and pressure using the formula below:
- molar mass = density × molar gas constant × temperature/pressure
Molar gas constant, R = R = 0.082 L.atm/mol/K.
Temperature = 150 °C = 423 K
Pressure = 785 torr = 1.033 atm
density = 4.93 g/L
molar mass of gas = 4.93 × 0.082 × 423/1.033
molar mass of gas = 165.5 g/mol
Then, molecular weight of the gas = 165.5 amu
Therefore, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
Learn more about molar mass of a gas at: brainly.com/question/26215522
Answer:
hope this help !
Explanation:
Use the given functions to set up and simplify 173 ° C .
1.5 =
CH4 = CH4
4.4 = CH4
173 ° C = CH4
Answer:
Its kinetic energy.
Explanation:
In a liquid, the molecules are so close together that there is very little empty space. A liquid also has a definite volume, because molecules in a liquid do not break away from the attractive forces. The molecules can, however, move past one another freely, and so a liquid can flow, can be poured, and assumes the shape of its container.
An increase in the temperature of a liquid causes an increase in the average speed of its molecules. As the temperature of a liquid increases, the molecules move faster thereby increasing the liquid's kinetic energy.