A Bronsted-Lowry acid-base is a molecule or ion that donates a hydrogen ion in a reaction.
<em>Brainliest Please?</em>
Answer:
-68.4 kJ
Explanation:
<u>The standard enthalpy of vaporization = 23.3 kJ/mol</u>
<u>which means the energy required to vaporize 1 mole of ammonia at its boiling point (-33 °C).</u>
To calculate heat released when 50.0 g of ammonia is condensed at -33 °C.
This is the opposite of enthalpy of vaporization which means that same magnitude of heat is released.
<u>Thus, Q = -23.3 kJ/mol</u>
<u>Where negative sign signifies release of heat</u>
Given: mass of 50.0 g
Molar mass of ammonia = 17.034 g/mol
Moles of ammonia = 50.0 /17.034 moles = 2.9353 moles
Also,
1 mole of ammonia when condenses at -33 °C releases 23.3 kJ
2.9412 moles of ammonia when condenses at -33 °C releases 23.3×2.9353 kJ
<u>Thus, amount of heat released when 50 g of ammonia condensed at -33 °C= -68.4 kJ, where negative sign signifies release of heat.</u>
Answer:
0.07172 L = 7.172 mL.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 1.0 atm, Standard P).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 3.2 x 10⁻³ mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 273 K, Standard T).
<em>∴ V = nRT/P =</em> (3.2 x 10⁻³ mol)(0.0821 L.atm/mol.K)(273 K)/(1.0 atm) = <em>0.07172 L = 7.172 mL.</em>