The empirical formula for the citric acid is C₆H₈O₇
<h3>Data obtained from the question </h3>
Divide by their molar mass
C = 37.51 / 12 = 3.126
H = 4.2 / 1 = 4.2
O = 58.29 / 16 = 3.643
Divide by the smallest
C = 3.126 / 3.126 = 1
H = 4.2 / 3.126 = 1.34
O = 3.643 / 3.126 = 1.17
Multiply through by 6 to express in whole number
C = 1 × 6 = 6
H = 1.34 × 6 = 8
O = 1.17 × 6 = 7
Thus, the empirical formula for the citric acid is C₆H₈O₇
Learn more about empirical formula:
brainly.com/question/24818135
The greatest number of valence electrons available for bondinging is Chlorine.
The rate law for the reaction : r=k.[A]²
<h3>Further explanation</h3>
Given
Reaction
A ⟶ B + C
Required
The rate law
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For the second-order reaction it can be:
1. the square of the concentration of one reactant.
![\tt r=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5E2)
2. the product of the concentrations of two reactants.
![\tt r=k[A][B]](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5BB%5D)
And the reaction should be(for second order) :
2A ⟶ B + C
Thus, for reaction above (reactant consumption rate) :
![\tt r=-\dfrac{\Delta A}{2\Delta t}=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3D-%5Cdfrac%7B%5CDelta%20A%7D%7B2%5CDelta%20t%7D%3Dk%5BA%5D%5E2)
Answer:
anaphase
Explanation:
because the chromosomes are moving towards different poles
Around 350 BC, the great Aristotle declared that the Earth was a sphere (based on observations he made about which constellations you could see in the sky as you travelled further and further away from the equator) and during the next hundred years or so, Aristarchus and Eratosthenes actually measured the size of the Earth!