Answer:
317.6 mL
Explanation:
Step 1: Write the balanced neutralization equation
MgO + 2 HCl ⇒ MgCl₂ + H₂O
Step 2: Calculate the mass corresponding to 640.0 mg of MgO
The molar mass of MgO is 40.30 g/mol. The moles corresponding to 640.0 mg (0.6400 g) of MgO are:
0.6400 g × (1 mol/40.30 g) = 0.01588 mol
Step 3: Calculate the moles of HCl that react with 0.01588 moles of MgO
The molar ratio of MgO to HCl is 1:2. The moles of HCl are 2/1 × 0.01588 mol = 0.03176 mol
Step 4: Calculate the volume of 0.1000 M HCl that contains 0.03176 moles
0.03176 mol × (1 L/0.1000 mol) = 0.3176 L = 317.6 mL
B) A chemical change because the nail reacts with water/oxygen to create rust (a type of oxide)
<span>Answer: B. Ionic solids have higher melting points than molecular solids.
</span>
This is because the rest are false, as solids are able to melt, and do have melting points. Also, not all solids have the same melting points.
Answer:
67.5%
Explanation:
Step 1: Write the balanced equation for the electrolysis of water
2 H₂O ⇒ 2 H₂ + O₂
Step 2: Calculate the theoretical yield of O₂ from 17.0 g of H₂O
According to the balanced equation, the mass ratio of H₂O to O₂ is 36.04:32.00.
17.0 g H₂O × 32.00 g O₂/36.04 g H₂O = 15.1 g O₂
Step 3: Calculate the percent yield of O₂
Given the experimental yield of O₂ is 10.2 g, we can calculate its percent yield using the following expression.
%yield = (exp yield / theoret yield) × 100%
%yield = (10.2 g / 15.1 g) × 100% = 67.5%