Answer:
c is the answer then check it out
Answer:
D. its actual size and distance from an observer
Explanation:
haha aint i the brainliest
jst kidding
hope it helped u
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>
Molar mass of CuSO4 * 5 H2O
= 63.546 + 32 + 16*4 + 5*18
= 249.546 g/mol
Mass of water in that formula: 5 * 18 = 90 g/mol
Percent by mass of water = 90 / 249.546 = 36%
<span>So, 36% of your 8.22 g is water. 0.36 * 8.22= 2.95 g of water
</span>