Maybe holding a tray in the cafeteria line
Answer:
Vf = 23 m/s
Explanation:
First we need to find the distance covered by the motorcycle 2 when it passes motorcycle 1. Using the uniform speed equation for motorcycle 1:
s₁ = v₁t₁
where,
s₁ = distance covered by motorcycle 1 = ?
v₁ = speed of motorcycle 1 = 6.5 m/s
t₁ = time = 10 s
Therefore,
s₁ = (6.5 m/s)(10 s)
s₁ = 65 m
Now, for the distance covered by motorcycle 2 at the meeting point. Since, the motorcycle started 50 m ahead of motorcycle 2. Therefore,
s₂ = s₁ + 50 m
s₂ = 65 m + 50 m
s₂ = 115 m
Now, using second equation of motion for motorcycle 2:
s₂ = Vi t + (1/2)at²
where,
Vi = initial velocity of motorcycle 2 = 0 m/s
Therefore,
115 m = (0 m/s)(10 s) + (1/2)(a)(10 s)²
a = 230 m/100 s²
a = 2.3 m/s²
Now, using 1st equation of motion:
Vf = Vi + at
Vf = 0 m/s + (2.3 m/s²)(10 s)
<u>Vf = 23 m/s</u>
Answer:
a.0.120mm
b.1.58s
c.0.6329Hz
Explanation:
a. Given that 0.120mm is displaced from equilibrium, 0.120mm after 0.790s on opposite side:
-The amplitude is the maximum displacement from equilibrium.
-The object goes from x=+A to x=-A and back during one cycle.
#Hence, the amplitude of the motion is 0.120mm
b.Motion from maximum positive displacement to maximum negative displacement takes places during half the period of Simple Harmonic Motion(SHM)

#Hence, the period of the motion is 1.58s
c. Frequency is calculated as one divided by the period of the motion.
From b above we know that the motions period is 1.58s
Therefore:
<em>Frequency=1/period=1/1.58=0.6329Hz</em>
<em>#</em><em>The frequency of the motion is </em><em>0.6329Hz</em>
A. Direction
Speed is just distance divided by time, but velocity is displacement divided by time and displacement has direction. Speed will always be positive, but velocity can be either positive or negative.
Answer:
Near the black hole, The gravitational pull is so strong and the black hole has a lot of stress energy. This causes the clock to tick slower than usual and due to this , Time slows down to a great extent.