The resistance at operating temperature is R = V/I = 2.9 V / 0.23A = 12.61 ohmsT from R – R0 = Roalpha (T – T0), we find that:T = T0 + 1/alpha (R/R0 -1) = 20 degrees Celsius + (1/ 4.3 x 10^-3/K) (12.61 ohms/ 1.1 ohms – 1)T = 2453.40 degrees Celsius
The net force is 12 N to the left.
Answer: A capacitor.
Explanation:
The capacitor is a passive element that is used in electronics to store electrical energy maintaining an electrical field. The simpler case of a capacitor is the parallel plates capacitor.
It consists of two parallel metal plates separated by a distance D, in this case, the air between the plates works as a dielectric, as the plates do not touch each other and are separated by a dielectric, the charge is stored in the surface plates.
There are a lot of other types of capacitors, the most used in actuality may be the cylindrical one, where instead of parallel plates, it uses two concentric cylinders, and the space between the cylinders is filled with a dielectric/insulator.
Answer:
(A)
Explanation:
We know , electric potential energy between two charge particles of charges "q" and "Q" respectively is given by kqQ/r where r is the distance between them.
Since the two charged particles are moving apart, the distance between them (r) increases and thus electrical potential energy decreases.
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>