Answer:
(a) work required to lift the object is 1029 J
(b) the gravitational potential energy gained by this object is 1029 J
Explanation:
Given;
mass of the object, m = 35 kg
height through which the object was lifted, h = 3 m
(a) work required to lift the object
W = F x d
W = (mg) x h
W = 35 x 9.8 x 3
W = 1029 J
(b) the gravitational potential energy gained by this object is calculated as;
ΔP.E = Pf - Pi
where;
Pi is the initial gravitational potential energy, at initial height (hi = 0)
ΔP.E = (35 x 9.8 x 3) - (35 x 9.8 x 0)
ΔP.E = 1029 J
Answer: Solor cycles and tings
The potential energy is defined as Ep=m*g*h where m is the mass of the body, g=9.81 m/s² and h is the height of the body. In our case m=0.01 kg and h=1.5 m. So when we input the values into the equation:
Ep=0.01*9.81*1.5= 0.14715 J.
So the potential energy of a grape is Ep=0.14715 J.
When the angle of the ramp increases, the weight of the box acting perpendicular to the ramp decreases.
<h3>
Normal reaction of the box</h3>
The normal reaction of the box is due to weight of the box acting perpendicular to the ramp.
Fn = Wcosθ
<h3>when the angle of the ramp = 30⁰</h3>
Fn = Wcos(30)
Fn = 0.866W
<h3>when the angle of the ramp = 45⁰</h3>
Fn = W x cos(45)
Fn = 0.7071W
Thus, when the angle of the ramp increases, the weight of the box acting perpendicular to the ramp decreases.
Learn more about normal reaction here: brainly.com/question/18292235
#SPJ1
Answer:
(a) -1.18 m/s
(b) 0.84 m/s
Explanation:
(a)
The total linear momentum before the lumberjack begins to move is zero because all parts of the system are at res
From the law of conservation of momentum
m1v1+m2v2=0 hence m1v1=-m2v2 where m1 is mass of lumberjack, v1 is velocity of lumberjeck, m2 is mass of floating log, v2 is velocity of the floating log.
Substituting M1 for 103 Kg, V1 for 2.93 m/s, M2 for 255 Kg into the above equation we obtain
103Kg*2.93 m/s=-255Kg*V2
V2=-(103 kg*2.93 m/s)/255=-1.183490196 m/s
Hence V2=-1.18 m/s
(b)
For the second log
V(M1+M2)=m1v1 where V is the common velocity
V(103 Kg+255 Kg)=103 Kg*2.93 m/s
V=(103 Kg*2.93 m/s)/(103 Kg+255 Kg)=0.842988827 m/s
V=0.84 m/s