Answer:

Explanation:
Hello.
In this case, for the given chemical reaction, in order to compute the grams of cadmium hydroxide that would be yielded, we must first identify the limiting reactant by computing the yielded moles of that same product, by 20.0 grams of NaOH (molar mass = 40 g/mol) and by 0.750 L of the 1.00-M solution of cadmium nitrate as shown below considering the 1:2:1 mole ratios respectively:

Thus, since 20.0 grams of NaOH yielded less of moles of cadmium hydroxide, NaOH is the limiting reactant, therefore the mass of cadmium hydroxide (molar mass = 146.4 g/mol) is:

Best regards.
Answer:
Increasing the surface area of a reactant increases the frequency of collisions and increases the reaction rate. Several smaller particles have more surface area than one large particle. The more surface area that is available for particles to collide, the faster the reaction will occur.
Explanation:
:)
Atomic # 64
electronic configuration is *[Xe] 6s^2 4f^8
n = 4
ℓ = 3
mℓ<span> = -3</span>
ms<span> = -½</span>
Answer:
0.32 M
Explanation:
Step 1: Write the balanced reaction at equilibrium
Ag₂S(s) ⇌ 2 Ag⁺(aq) + S²⁻(aq)
Step 2: Calculate the concentration of Ag⁺ at equilibrium
We will use the formula for the concentration equilibrium constant (Keq), which is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species.
Keq = [Ag⁺]² × [S²⁻]
[Ag⁺] = √{Keq / [S²⁻]}
[Ag⁺] = √{2.4 × 10⁻⁴ / 0.0023} = 0.32 M
The false statement from the above is that: Temporary charge imbalances in the molecules lead to London dispersion forces.
<h3>What are the factors that affect London dispersion forces?</h3>
Generally, the factors which affects the London dispersion forces a dispersion force are as follows:
- Shape of the molecules
- Distance between molecules
- Polarizability of the molecules
However, London dispersion forces simply refers to a sort of temporary attractive force formed when electrons in two adjacent atoms occupy positions that make the atoms form dipoles.
So therefore, temporary charge imbalances in the molecules lead to London dispersion forces is a false statement
Learn more about London dispersion forces:
brainly.com/question/1454795