Answer:
-8,-7
Step-by-step explanation:
I think
Answer:
Vel_jet_r = (464.645 mph) North + (35.35 mph) East
||Vel_jet_r|| = 465.993 mph
Step-by-step explanation:
We need to decompose the velocity of the wind into a component that can be added (or subtracted from the velocity of the jet)
The velocity of the jet
500 mph North
Velocity of the wind
50 mph SouthEast = 50 cos(45) East + 50 sin (45) South
South = - North
Vel_ wind = 50 cos(45) mph East - 50 sin (45) mph North
Vel _wind = 35.35 mph East - 35.35 mph North
This means that the resulting velocity of the jet is equal to
Vel_jet_r = (500 mph - 35.35 mph) North + 35.35 mph East
Vel_jet_r = (464.645 mph) North + (35.35 mph) East
An the jet has a magnitude velocity of
||Vel_jet_r|| = sqrt ((464.645 mph)^2 + (35.35 mph)^2)
||Vel_jet_r|| = 465.993 mph
Answer:
∠x = 90°
∠y = 58°
∠z = 32°
Step-by-step explanation:
The dimensions of the angles given are;
∠B = 32°
Whereby ΔABC is a right-angled triangle, and the square fits at angle A, we have;
∠A = 90°
∴ ∠B + ∠C = 90° which gives
32° + ∠C = 90°
∠C = 58°
∠x + Interior angle of the square = 180° (Sum of angles on a straight line)
∴ ∠x + 90° = 180°
Hence;
∠x = 90°
∠x + ∠y + 32° = 180° (Sum of angles in a triangle)
∴ 90° + ∠y + 32° = 180°
∠y = 180 - 90° - 32° = 58°
∠y + ∠z + Interior angle of the square = 180° (Sum of angles on a straight line)
58° + ∠z +90° = 180°
∴ ∠z = 32°
∠x = 90°
∠y = 58°
∠z = 32°
Yes, the answer is both of them. tell me if you want to know why
Answer:
f=−px+8x−2/x
Step-by-step explanation:
its a fraction