Answer
given,
diameter,d₁ = 7.5 cm
d₂ = 4.5 cm
P₁ = 32 kPa
P₂ = 25 kPa
Assuming, we have calculation of flow in the pipe
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₂² v₂
Applying Bernoulli's equation
v₂ = 4.01 m/s
fluid flow rate
Q = A₂ V₂
Q = π (0.0225)² x 4.01
Q = 6.38 x 10⁻³ m³/s
flow in the pipe is equal to 6.38 x 10⁻³ m³/s
Answer:

Explanation:
<u>Given:</u>
- Mass,
- Velocity,

where,
are the uncertainties in mass and velocity respectively.
The kinetic energy is given by

The uncertainty in kinetic energy is given as:

The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!
<span>PE=−[G<span>M1</span><span>M2</span>]÷R
</span><span>
Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>
Answer:
Explanation:
Time dilation formula is
T = T₀ / √ 1-v²/c²
T₀ is time elapsed in moving reference , T time elapsed in stationary reference.
Here T₀ = 1 second
T = 1/√ 1-0.9² = 1/.4358 = 2.3 second
So 2.3 second will pass for each second on moving reference.
Answer:
numbers
Explanation:
Virtually all unimaginable processes can be described as the movement of certain objects. To analyze and predict the nature of the movements that result from the different kinds of interactions, some important concepts such as momentum, force and energy have been invented. If momentum, force, and energy are known and expressed in a quantitative way (that is, by numbers) it is possible to establish rules by which the resulting movements can be predicted.