Answer:

Explanation:
Given,
The angle of the slide=
The mass of the child is= m
coefficient of friction = 0.20
when she slides down now apply Newton's law


therefore the acceleration

![a=g[\sin \theta -\mu \cos \theta]](https://tex.z-dn.net/?f=a%3Dg%5B%5Csin%20%5Ctheta%20-%5Cmu%20%5Ccos%20%5Ctheta%5D)
![a=9.8\times [\sin 42^\circ -0.2\times \cos 42^\circ]](https://tex.z-dn.net/?f=a%3D9.8%5Ctimes%20%5B%5Csin%2042%5E%5Ccirc%20-0.2%5Ctimes%20%5Ccos%2042%5E%5Ccirc%5D)

hence, the magnitude of acceleration during her sliding is equal to 
Answer:
The average forces would be the same
Explanation:
Both have the same velocity on impact as they fell from the same height.
Both have the same velocity after the bounce because they reach the same height.
Both have the same mass
Both will thus experience the same impulse because both have the same change in momentum.
Therefore both experience the same average force.
Answer:
<u>because of the doppler effect</u>
Explanation:
<em>Remember</em>, the doppler effect refers to the changes in sound (frequency of sound) observed by a person who is in a position relative to the wave source.
In this example, we notice as the train comes closer to the boy, the sound becomes louder also increasing the pitch slightly, the doppler effect sets in when the train passes the boy because the boy notices a decrease in the pitch of the moving train.
We learn from the change in the observed sound of the train that the frequency of the sound is determined by the distance of the observer from the wave source.
In other words, the closer the source of the sound to the observer; the faster it travels to the observer, however, the farther it is; the lesser it is; the greater the sound heard.
Answer:
At an angle of 
Explanation:
Assume the river flows from East to West so for the swimmer to cross across it, assume he crosses it from West to East.
The resultant speed will be given by

Answer:
Average speed is 60 km/hour
Explanation:
When we need to calculate average speed, we use this equation:

Where:
position at the beginning
at the end


Then: 

Finally V = 60 km/hour