Answer:
g = 0.4 m/s²
Explanation:
Given the following data;
Height = 5 meters
Time = 5 seconds
To find the acceleration due to gravity (g) on the planet;
Mathematically, the maximum height of an object is given by the formula;
H = ½gt²
Where;
H is the height measured in meters.
g is the acceleration due to gravity.
t is time measured in seconds.
Substituting into the formula, we have;
5 = ½ * g * 5²
5 = 0.5 * g * 25
5 = 12.5 * g
g = 5/12.5
g = 0.4 m/s²
assuming the reference line to measure the height for gravitational potential energy lying at the equilibrium position
m = mass attached to the spring = 10.00 kg
k = spring constant of the spring = 250 N/m
h = height of the mass above the reference line or equilibrium position = 0.50 m
x = compression of the spring = 0.50 m
v = speed of mass = 2.4 m/s
A = maximum amplitude of the oscillation
v' = speed of mass at the maximum amplitude location = 0 m/s
using conservation of energy between the point where the speed is 2.4 m/s and the highest point at which displacement is maximum from equilibrium
kinetic energy + spring potential energy + gravitational potential energy = kinetic energy at maximum amplitude + spring potential energy at maximum amplitude + gravitational potential energy at maximum amplitude
(0.5) m v² + m g h + (0.5) k x² = (0.5) m v'² + m g A + (0.5) k A²
inserting the values
(0.5) (10) (2.4)² + (10) (9.8) (0.50) + (0.5) (250) (0.50)² = (0.5) (10) (0)² + (10) (9.8) A + (0.5) (250) A²
109.05 = (98) A + (125) A²
A = 0.62 m
Answer:
The think the answer is solar radiation.
Explanation:
here, we gain the heat from the sun through a radiation. When it travels from the sun the harmful radiation are absorbed by ozone layer and heat enegry is provided to the surface of the Earth.
<em>hope</em><em> </em><em>it helps</em><em>.</em><em>.</em>
im pretty sure this is right 4. true 5. force
P=IV
P=15KW=15000W
V=300
I=P/V
I=15000/300
I=50 Ampere