Answer:
(a) 0.71 mm
(b) 0.158 cubic cm
Explanation:
The width of one wire is the diameter of the wire.
(a) Let the diameter of each wire is d.
So, 10 d = 14.2 mm
d = 1.42 mm
radius of each wire, r = d/2 = 1.42/2 = 0.71 mm
(b) Length, L = 10 cm
The volume of the single wire is given by

Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight
Answer:
=3.5 m/s
Explanation:
y = x tanθ - 1/2 g x² / (u²cos²θ )
y = 0.25 , x = 0.5, θ = 40°
.25 = .50 tan40 - .5 x 9.8x x²/ u²cos²40
.25 = .42 - 2.0875/u²
u = 3.5 m / s.
Answer:
when an electron made a transition from an outer orbit to one closer to the nucleus
Explanation:
Bohr amended that view of the motion of the planetary electrons to bring the model in line with the regular patterns (spectral series) of light emitted by real hydrogen atoms. ... Light, he proposed, radiated from hydrogen atoms only