Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3
Answer:
The velocity of the freight car decreases.
Explanation:
This question is answered by the conservation of momentum principle.
When the freight car is moving at a certain speed, it has a constant momentum.
We will call this M1.
The equation for M1 will be:
M1 = Mass * Speed
Now when the coal is dumped into the freight car, the Mass increases.
Since conservation of momentum states that the momentum will remain the same. We have:
M1 = (Mass of freight + Mass of coal) * Speed
Since M1 is constant, if the mass increases, the speed had to decrease to keep the equation true.
Answer:
Explanation:
Given
Velocity of point is given by 
To get maximum or minimum velocity differentiate v w.r.t t

so
should be equal to zero


i.e. 