Answer:
The rectangular coordinates of the point are (3/2 , √3/2)
Step-by-step explanation:
* Lets study how to change from polar form to rectangular coordinates
- To convert from polar form (r , Ф) to rectangular coordinates (x , y)
use these rules
# x = r cos Ф
# y = r sin Ф
* Now lets solve the problem
∵ The point in the rectangular coordinates is (√3 , π/6)
∴ r = √3 and Ф = π/6
- Lets find the x-coordinates
∵ x = r cos Ф
∵ r = √3
∵ Ф = π/6
∴ x = √3 cos π/6
∵ cos π/6 = √3/2
∴ x = √3 (√3/2) = 3/2
* The x-coordinate of the point is 3/2
- Lets find the y-coordinates
∵ y = r sin Ф
∵ r = √3
∵ Ф = π/6
∴ y = √3 sin π/6
∵ sin π/6 = 1/2
∴ y = √3 (1/2) = √3/2
* The y-coordinate of the point is √3/2
∴ The rectangular coordinates of the point are (3/2 , √3/2)