The pH of the buffer is 6.1236.
Explanation:
The strength of any acid solution can be obtained by determining their pH. Even the buffer solution strength of the weak acid can be determined using pH. As the dissociation constant is given, we can determine the pKa value as the negative log of dissociation constant value.
![pKa=-log[H] = - log [ 5.66 * 10^{-7}]\\ \\pka = 7 - log (5.66)=7-0.753=6.247\\\\pka = 6.247](https://tex.z-dn.net/?f=pKa%3D-log%5BH%5D%20%3D%20-%20log%20%5B%205.66%20%2A%2010%5E%7B-7%7D%5D%5C%5C%20%5C%5Cpka%20%3D%207%20-%20log%20%285.66%29%3D7-0.753%3D6.247%5C%5C%5C%5Cpka%20%3D%206.247)
The pH of the buffer can be known as
![pH = pK_{a} + log[\frac{[A-]}{[HA]}}]](https://tex.z-dn.net/?f=pH%20%3D%20pK_%7Ba%7D%20%2B%20log%5B%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D%7D%5D)
The concentration of ![[A^{-}] = Moles of [A]/Total volume = 0.608/2 = 0.304 M\\](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20Moles%20of%20%5BA%5D%2FTotal%20volume%20%3D%200.608%2F2%20%3D%200.304%20M%5C%5C)
Similarly, the concentration of [HA] = 
Then the pH of the buffer will be
pH = 6.247 + log [ 0.304/0.404]

So, the pH of the buffer is 6.1236.
Answer: 20 mg Te-99 remains after 12 hours.
Explanation: N(t) = N(0)*(1/2)^(t/t1/2)
N(t) = (80 mg)*(0.5)^(12/6)
N(t) = 20 mg remains after 12 hours
<u>a) Answer: </u>
<em>Number of molecules in 1 mole</em>
<u>Explanation:</u>
a) Whether we take any of the substance among all three of the given substances they will have the same number of molecules in 1 mole of the substance is considered and the value for this will be 
<u>b) Answer: </u>
<em>In the given question </em><em>mass of the substance</em><em> which is </em><em>greatest</em><em> is asked for </em><em>one mole</em><em> and we also know that </em><em>mass of one mole is given by molar mass. </em>
<u>Explanation:</u>
b) It is known that
is the molar mass for oxygen which is greater than that of hydrogen while fluorine has a molar mass of
which on comparison shows that, it is the highest amongst all three.
Answer: Although the best-known cause of a mass extinction is the asteroid impact that killed off the non-avian dinosaurs, in fact, volcanic activity seems to have wreaked much more havoc on Earth's biota. Volcanic activity is implicated in at least four mass extinctions, while an asteroid is a suspect in just one. Examples, of mass extinctions are Permian extinction of marine species, and Cretaceous extinction of various species, including dinosaurs.