Answer:
<h2>406 K</h2>
Explanation:
To convert a temperature from degree Celsius to Kelvin add 273 to the value in degree Celsius
That's
K = 273 + °C
where
K is the temperature in Kelvin
°C is the temperature in degree Celsius
From the question we have
K = 273 + 133
We have the final answer as
<h3>406 K</h3>
Hope this helps you
Answer
2-methyl-2-pentene
Explanation:
1. Identify the group that takes precedence in this case alkene hence this molecule is an alkene with a methyl group side chain.
2.Find the longest carbon chain where the functional group(alkene group in this case) has the lowest Carbon number
3.What are the side groups? One side group can be seen at carbon 2 this group is methyl
4. Naming, number separated by "," and number from letters by "-" so the compound should be
2-methyl-2-pentene
Given :
Number of molecules of hydrogen peroxide, N = 4.5 × 10²².
To Find :
The mass of given molecules of hydrogen peroxide.
Solution :
We know, 1 mole of every compound contains Nₐ = 6.022 × 10²³ molecules.
So, number of moles of hydrogen peroxide is :

Now, mass of hydrogen peroxide is given as :
m = n × M.M
m = 0.0747 × 34 grams
m = 2.54 grams
Hence, this is the required solution.
Two changes would make this reaction reactant-favored
C. Increasing the temperature
D. Reducing the pressure
<h3>Further explanation</h3>
Given
Reaction
2H₂ + O₂ ⇒ 2H₂0 + energy
Required
Two changes would make this reaction reactant-favored
Solution
The formation of H₂O is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature rises, the equilibrium will shift towards the endothermic reaction, so the reaction shifts to the left towards H₂ + O₂( reactant-favored)
And reducing the pressure, then the reaction shifts to the left H₂ + O₂( reactant-favored)⇒the number of coefficients is greater
Answer:
Explanation:
1 mol of methane = 6.02 * 10^23 molecules
6.70 mol of methane = x
Cross multiply
x = 6.70 * 6.02 * 10^23
x = 4.033 * 10^23 molecules.