Answer:
No he should not attempt the pass
Explanation:
Let t be the time it takes for the car to pass the truck. The driver should ONLY attempt to pass when the distance covered by himself plus the distance covered by the oncoming car is less than or equal 400 m (a near miss)
At acceleration of 1m/s2 and a clear distance of 10 + 20 + 10 = 40 m, we can use the following equation of motion to estimate the time t in seconds




Within this time frame, the first car would have traveled a total distance of the clear distance (40m) plus the distance run by the truck, which is
8.94 * 25 = 223.6m
So the total distance traveled by the first car is 223.6 + 40 = 263.6m
The distance traveled by the 2nd car within 8.94 s at rate of 25m/s is
8.94 * 25 = 223.6 m
So the total distance covered by both cars within this time frame
223.6 + 263.6 = 487.2m > 400 m
So no, he should not attempt the pass as we will not clear it in time.
Answer:
Lower energy shell which will be nearer to the nucleus.
Explanation:
When electron move from one energy level to another, an electron must gain or lose just the right amount of energy.
When atoms releases energy, electrons move into lower energy levels. The electrons in the shells aways from the nucleus have more energy as compared to the electrons in the nearer shells.
Electrons with the lowest energy are found closest to the nucleus, where the attractive force of the positively charged nucleus is the greatest. Electrons that have higher energy are found further away
I can’t see the picture what do you need help with
Answer:
Induced emf will be 0.468 volt
Explanation:
We have given diameter of wire d = 15.3 cm
So radius 
So area 
Change in magnetic field dB = 0.26 - 0.77 = -0.51 T
Time for change in magnetic field dt = 0.26 sec
We know that emf is given by 
Answer:
This represents radiation in ultra-violet region .
Explanation:
Energy of the orbit where n = 3 is given as follows

= -1.511 eV
Energy of the orbit where n = 1 is given as follows

= 13.6 eV
Difference of [tex]E_3 and [tex]E_1 = - 1.511+ 13.6
= 12.089 eV.
The wavelength of light having this energy in nm is given by the expression as follows
Wavelength in nm = 1244 / energy in eV
= 1244 / 12.089
= 102.90 nm
This represents radiation in ultra-violet region .