Answer: both hoops have the same kinetic energy at the bottom of the incline.
Explanation:
If we assume no work done by non conservative forces (like friction) , the total mechanical energy must be conserved.
K1 + U1 = K2 + U2
If both hoops start from rest, and we choose the bottom of the incline to be the the zero reference level for gravitational potential energy, then
K1 = 0 and U2 = 0
⇒ ΔK = ΔU = m g. h
If both inclines have the same height, and both hoops have the same mass m, the change in kinetic energy, must be the same for both hoops.
Answer:
Thermopile is an electronic device that converts thermal energy into electrical energy.
A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
Answer:
D is the answer
Explanation:
D is the most highest one so
the answer is D
Answer:
A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes
Explanation:
Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:
2as = Vf² - Vi²
s = (Vf² - Vi²)/2a
where,
Vf = Final Velocity of Car = 0 mi/h
Vi = Initial Velocity of Car = 50 mi/h
a = deceleration of car
s = distance covered
Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.
So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:
s = vt
FOR SOBER DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 0.33 s
s = s₁
Therefore,
s₁ = (73.33 ft/s)(0.33 s)
s₁ = 24.2 ft
FOR DRUNK DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 1 s
s = s₂
Therefore,
s₂ = (73.33 ft/s)(1 s)
s₂ = 73.33 ft
Now, the distance traveled by drunk driver's car further than sober driver's car is given by:
ΔS = s₂ - s₁
ΔS = 73.33 ft - 24.2 ft
<u>ΔS = 49.13 ft</u>