Answer:
m is expressed in kilograms and r in metres, with I (moment of inertia) having the dimension kilogram-metre square.
Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
Answer:
2.72×10^-7
Explanation:
velocity = frequency × wavelength
2.05×10^8=7.55×10^14 wavelength
wavelength = 2.05×10^8/7.55×10^14
wavelength = 2.72×10^-7
Answer:

Explanation:
Speed can be found by dividing the distance by the time.

The distance is 18 meters and the time is 3 seconds.

Substitute the values into the formula.

Divide.

The speed of the puck is <u>6 meters per second.</u>