This problem is to use the Claussius-Clapeyron Equation, which is:
ln [p2 / p1] = ΔH/R [1/T2 - 1/T1]
Where p2 and p1 and vapor pressure at estates 2 and 1
ΔH is the enthalpy of vaporization
R is the universal constant of gases = 8.314 J / mol*K
T2 and T1 are the temperatures at the estates 2 and 1.
The normal boiling point => 1 atm (the pressure of the atmosphere at sea level) = 101,325 kPa
Then p2 = 101.325 kPa
T2 = ?
p1 = 54.0 kPa
T1 = 57.8 °C + 273.15K = 330.95 K
ΔH = 33.05 kJ/mol = 33,050 J/mol
=> ln [101.325/54.0] = [ (33,050 J/mol) / (8.314 J/mol*K) ] * [1/x - 1/330.95]
=> 0.629349 = 3975.22 [1/x - 1/330.95] = > 1/x = 0.000157 + 1/330.95 = 0.003179
=> x = 314.6 K => 314.6 - 273.15 = 41.5°C
Answer: 41.5 °C
I would say the answer is emissions. These are the particles that are not supposed to be present in air but due to the production of different substances from humans daily activities these substances go with the air we breath. Hope this helped.
Hello! I can help you with this. First, convert them into it’s written out standard form. 10^4 is 10,000. 10,00 * 1.26 is 12,600. 10,000 * 2.5 is 25,000. 12,600 + 25,000 = 37,600 or 3.76 * 10^4 in scientific notation. The answer in scientific notation is 3.76 * 10^4.
Answer:
(a): 2,300 kilograms
(b): 0.005 kilograms
(c): 2.3 × 10^-5 kilograms
(d): 155 kilograms
Explanation:
Formulas:
(a); divide the mass value by 1000
(b); divide the mass value by 1e+6
(c); divide the mass value by 1e+9
(d); multiply the mass value by 1000
Answer:
Newton's First Law of Motion
Explanation:
Newton’s first law of motion is when an object can’t move or change their speed without some type of force. Inertia is included since is caused by unbalanced force.