D. a and b because same-charged particles repel each other
Answer:
2.74 M
Explanation:
Given data:
Mass of sodium chloride = 80.0 g
Volume of water = 500.0 mL
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Now we will convert the mL into L.
500.0 mL× 1 L /1000 mL = 0.5 L
In next step we will calculate the number of moles of sodium chloride.
Number of moles = mass/molar mass
Number of moles = 80.0 g/ 58.4 g/mol
Number of moles = 1.37 mol
Molarity:
M = 1.37 mol/ 0.5 L
M = 2.74 M
First M stands for Molarity which is (moles of solute) / (Liters of solution). we also know that moles = (mass) / (molar mass). so we can form some equations here. We know:
Molarity (M) = moles (mol) / Liters (L)
moles (mol) = (mass) / (molar mass)
we can substitute the (mass) / (molar mass) for (moles) and get:
M = [(mass) / (molar mass)] / Liters
we can now isolate mass and get
M * Liters * molar mass = mass
now we need to find the molar mass of CaCl2 which is 110.98 g/mol
plug the values in and get
.350M * 6.5L * 110.98 g/mol = mass
mass = 252.4795g however the 6.5L has only 2 sig figs so i would say
mass CaCl2 = 2.5 * 10 ^2 g
[B][C] / [A]^2
Products raised to the coefficients over reactants raised to the coefficients
Explanation:
Transpiration is the movement of water through plants using the xylem and also their loss from plants surfaces.
Water is a lost from plants from the leaves and the stomata. This water is usually replaced by the absorption of water by the root.
- Transpiration is an important part of the water cycle in the biosphere.
- Significant amount of water is lost from plant in the process of transpiration.
- Transpiration water condenses in the atmosphere to form rain clouds.
An example of transpiration when water loses water from their leaves.