Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)
The answer is option B "anaerobic." Weightlifting deals with stress to the muscles when lifting weights and due time the muscles will begin to adapt and get stronger. Other examples of anaerobic exercise are things like: weight training, sprinting, cycling, and jumping anything that has short exertion, and high-intensity movement is an anaerobic exercise.
Hope this helps!
Nonportrit
As the temperature increases the kinetic energy of the molecules increases, if u add more heat you get more kinetic energy.
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>