Answer:
Explanation:
F = ma
<u>Assuming</u> the 20° is angle θ measured to the horizontal
mgsinθ - μmgcosθ = ma
g(sinθ - μcosθ) = a
at constant velocity, a = 0
g(sinθ - μcosθ) = 0
sinθ - μcosθ = 0
sinθ = μcosθ
μ = sinθ/cosθ
μ = tanθ
μ = tan20
μ = 0.3639702342...
μ = 0.36
vector is the answer of this blank
Answer:
Sharing of information
Explanation:
The development of SI unit has helped in the sharing of scientific as well as techical information internationally.
HOPE THIS HELPED
ENJOY YOUR DAY / NIGHT:)
Answer:
Glow
Explanation:
Actually, it is the air in front of the meteoroid that heats up. The particle is traveling at speeds between 20 and 30 kilometers per second. It compresses the air in front, causing the air to get hot. The air is so hot it begins to glow — creating a meteor - the streak of light observed from Earth.
Hope this helped!
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3