Answer:
Infinite pairs of numbers
1 and -1
8 and -8
Step-by-step explanation:
Let x³ and y³ be any two real numbers. If the sum of their cube roots is zero, then the following must be true:
![\sqrt[3]{x^3}+ \sqrt[3]{y^3}=0\\ \sqrt[3]{x^3}=- \sqrt[3]{y^3}\\x=-y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E3%7D%2B%20%5Csqrt%5B3%5D%7By%5E3%7D%3D0%5C%5C%20%5Csqrt%5B3%5D%7Bx%5E3%7D%3D-%20%5Csqrt%5B3%5D%7By%5E3%7D%5C%5Cx%3D-y)
Therefore, any pair of numbers with same absolute value but different signs fit the description, which means that there are infinite pairs of possible numbers.
Examples: 1 and -1; 8 and -8; 27 and -27.
Multiply the variable k times 4 would give you 4k.
Then cross multiply 14x8 = 112
Therefore, you would have 4k = 112.
Divide 112 by 4 to get your answer!
It’s triangular your welcome hint q
Answer:
8. -6
Step-by-step explanation: