Answer:
By increasing the pressure, the molar concentration of N2O4 will increase
Explanation:
We have the equation 2NO2 ⇔ N2O4
This equation is reversible and exotherm. By <u>decreasing the temperature</u>, the reaction will produce more energy, so the reaction will move to the right. But a lower temperature also lowers the rate of the process, so, the temperature is set at a compromise value that allows N2O4 to be made at a reasonable rate with an equilibrium concentration that is not too unfavorable
So <u>increasing the temperature</u> will shift the equilibrium to the left. The equilibrium shifts in the direction that consumes energy.
If we d<u>ecrease the concentration of NO2</u>, the equilibrium will shift to the left, resulting in forming more reactants.
To increase the molar concentration of the product N2O4, we have to <u>increase the pressure</u> of the system.
NO2 takes up more space than N2O4, so increasing the pressure would allow the reactant to collide more form more product.
By increasing the pressure, the molar concentration of N2O4 will increase
Answer:
1.0 × 10⁻⁹ M.
Explanation:
<em>∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.</em>
[H₃O⁺] = 1.0 x 10⁻⁵ M.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(1.0 x 10⁻⁵ M) = <em>1.0 × 10⁻⁹ M.</em>
Answer:
Moment=Force x Pivot
Explanation:
A moment is the turning effect of a force. Moments act about a point in a clockwise or anticlockwise direction.
Law of moments:
When an object is balanced (in equilibrium) the sum of the clockwise moments is equal to the sum of the anticlockwise moments.
How to calculate moments:
Moment=Force x Pivot
To measure the density of the stone placed in a graduated cylinder let us follow these steps bellow
- Measure the volume of water poured into a graduated cylinder
- Place the object in the water and remeasure the volume.
- The difference between the two volume measurements is the volume of the object.
- Divide the mass by the volume to calculate the density of the object.
<em>We know that the formula for density is given as </em>
Given data
Mass = 8gram
Initial Volume of water in cylinder = 25mL
Final Volume of water in cylinder = 29mL
Hence the volume of the rock = 29-25 = 4mL
Therefore the density of the rock = 8/4 = 2 g/mL
Learn more:
brainly.com/question/17336041
Answer:
Cyanide
Explanation:
<em>Molecular Structure of Each Answer</em>
A: CN-
B: NO3-
C: OH-
D: SO4 2-
As you can see, only A (Cyanide) is the only compound that does not contain oxygen, meaning it is NOT an oxyanion.