The answer is B.
plz mark me as brainliest. i really need it.
Answer = B = Neutrons and Mass Number
Isotopes are defined as those atoms which have same atomic number but different atomic masses.
Atomic mass is basically the number of protons and neutrons present in an atom.
Atomic number is the number of protons present in an atom.
So, in isotopes the number of protons are same but the number of neutrons vary due to which atomic masses also vary.
In given three isotopes, all have same number of protons but different number of neutrons.
i.e.
H-1 = 1 P + 0 N = 1 u (Proton)
H-2 = 1 P + 1 N = 2 u (Deuterium)
H-3 = 1 P + 2 N = 3 u (Tritium)
Hence, it is clear that the number after H shows a change in number of neutrons and mass number.
In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l)
</span><span>E = +1.47
</span>
<span>Br(l) + 2e- = 2Br-
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
Answer:
The molecular formula of glucose is C₆H₁₂O₆
Explanation:
Empirical formula:
It is the simplest formula gives the ratio of smallest whole number of atoms.
Molecular formula:
It gives the total number of atoms in a molecule of compound.
The molecular formula and empirical formula can be related as follow:
Molecular formula = n × empirical formula
Given data:
Empirical formula = CH₂O
Molecular formula = ?
It is stated in given problem that molecular formula is the 6 times of the empirical formula.
Molecular formula = n × empirical formula
Molecular formula = 6 × CH₂O
Molecular formula = C₆H₁₂O₆
The molecular formula of glucose is C₆H₁₂O₆.