Answer:
P(total pressure) = 504 mmHg = 504mm/760mm/atm = 0.663 atm
Explanation:
Apply Dalton's Law of Partial Pressures.
P(total) = ∑Partial Pressures = ∑(256mm + 198mm + 48mm) = 504 mmHg
P(total pressure) = 504 mmHg = 504mm/760mm/atm = 0.663 atm
According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.
To find the concentration of hydronium ions, take 10 raised to the negative pH:
10^-9.56= 2.75 x10^-10M
To find the concentration of hydroxide ions, take 10 raised to the negative pOH: 10^-4.44 = 3.63 x10^-5M
The two ways to measure the sand in a sand castle are by counting the number of pails of sand used to build the castle and by determining the mass of the sand used in building the castle. The first method makes use of the volume of the pail to determine the amount of sand while the second method is a more quantitative way.<span />
<span>The number of neutrons bromine will have are equal to
= protons + neutrons
so,
80-35=45</span>