The period of the oscillations.T = 1.2042s
Opposition is the process of any quantity or measure fluctuating repeatedly about its equilibrium value throughout time. This process is referred to as oscillation. Oscillation, a periodic fluctuation of a substance, can also be described as alternating between two values or rotating around a central value.
Typically, the mathematical formula for the moment of inertia is
T = 2 π √(I / mgd)
Therefore, a moment of inertia
I = 9.00×10-3 + md^2 ;
I=9.00*10^{-3}+ 0.5 * 0.3^2
I=0.054
T=2
T=1.2042s
The period of the oscillations.T = 1.2042s
Read more about the period of the oscillations. brainly.com/question/14394641
#SPJ1
Correct question:
A solenoid of length 0.35 m and diameter 0.040 m carries a current of 5.0 A through its windings. If the magnetic field in the center of the solenoid is 2.8 x 10⁻² T, what is the number of turns per meter for this solenoid?
Answer:
the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Explanation:
Given;
length of solenoid, L= 0.35 m
diameter of the solenoid, d = 0.04 m
current through the solenoid, I = 5.0 A
magnetic field in the center of the solenoid, 2.8 x 10⁻² T
The number of turns per meter for the solenoid is calculated as follows;

Therefore, the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
The angular speed of the device is 1.03 rad/s.
<h3>What is the conservation of angular momentum?</h3>
A spinning system's ability to conserve angular momentum ensures that its spin will not change until it is subjected to an external torque; to put it another way, the rotation's speed will not change as long as the net torque is zero.
Using the conservation of angular momentum

Here, = the system's angular momentum before the collision
= 0 + mv
= (0.005)(450)(0.752)
= 1.692 kgm²/s
The moment of inertia of the system is given by
I = 2(M₁R₁² + M₂R₂²)+ mR₁²
= 2[(1.2)(0.8)² +(0.5)(0.3)²]+0.005(0.8)²
= 1.6292 kgm²
Here, = Iω
So,
1.692 = 1.6292(ω)
ω = 1.03 rad/s
To know more about the conservation of angular momentum, visit:
brainly.com/question/1597483
#SPJ1