Answer:
17.69 m
Explanation:
The time it takes the brick to strike the ground is 1.90 seconds.
We can apply one of Newton's equation of linear motion to find the height of the building:

where s = distance (in this case height)
u = initial velocity = 0 m/s
t = time = 1.90 s
g = acceleration due to gravity = 9.8 m/s^2
Therefore:
s = (0 * 1.9) + (0.5 * 9.8 * 1.9 * 1.9)
s = 0 + 17.68
s = 17.69 m
The height of the building is 17.69 m.
Answer:
5760 J
Explanation:
From the question given above, the following data were obtained:
Mass of block = 48 kg
Height (h) = 12 m
Gravitational field strength (g) = 10 N/Kg
Gravitational potential energy (PE) =?
The gravitational potential energy stored by the block can simply be obtained as follow:
PE = mgh
PE = 48 × 10 × 12
PE = 5760 J
Therefore, the gravitational potential energy stored by the block is 5760 J
The lord of the greeks answer d
In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)