The answer is the second choice
Given that in a parallel circuit:
R1 = 12 ohms
R2= 15 ohms
I = 12 A
I2 = 4 A
V=?
R=?
R3 =?
P=?
Since,
V= IR
or,
V2 = I2 * R2
V2= 4* 15
V2 = 60V
Since in a parallel circuit voltage remain same in all component of the circuit and is equal to the source voltage.
Therefore,
V= V1 = V2 = V3 = 60V
Since,
V= IR
R= V/I
R= 60/12
R= 5 ohm
That is total resistance is equal to 5 ohms.
Since for parallel circuit,
1/R= 1/R1 + 1/R2 + 1/R3
1/5= 1/12+ 1/15 + 1/R3
or
1/R3= 1/5- 1/12- 1/15
1/R3= 1/20
or
R3= 20 ohms
Since,
V=IR
I= V/R
I1= V1/ R1
I1= 60/12
I1= 5 A
I3= V3/R3
I3= 60/20
I3= 3A
Since,
P=VI
P= 60*12
P= 720 watt
P1= V1* I1
P1= 60* 5
P1= 300 watt
P2= V2* I2
P2= 60* 4
P2= 240watt
P3= V3*I3
P3= 60*3
P3= 180 watt
Hence we have,
R1= 12 ohms , R2= 15 ohms, R3= 20 ohms, R= 5 ohms
I1= 5A, I2= 4A, I3= 3A, I= 12 A
V1= V2= V3= V= 60V
P1= 300 watt, P2= 240 watt, P3 = 180 watt, P= 720 watt
Answer:
6.69 m/s
4.483 m
1.42s
Explanation:
Given that:
Initial Velocity, u = 0
Final velocity, v =?
Acceleration, a = 35m/s²
1.) using the relation :
v² = u² + 2as
v² = 0 + 2(35) * 64*10^-2m
v² = 70 * 0.64
v = sqrt(44.8)
v = 6.693
v = 6.69 m/s
B.) height from the ground, h0 = 2.2
How high ball went , h:
Using :
v² = u² + 2as
Upward motion, g = - ve
0 = 6.69² + 2(-9.8)*(h - 2.2)
0= 6.69² - 19.6(h - 2.2)
44.7561 + 43.12 - 19.6h = 0
19.6h = 44.7561 - 43.12
h = 87.8761 / 19.6
h = 4.483 m
C.)
vt - 0.5gt² = h - h0
6.69t - 0.5(9.8)t²
6.69t - 4.9t² = 1.83 - 2.2
-4.9t² + 6.69t + 0.37 = 0
Using the quadratic equation solver :
Taking the positive root:
1.4185 = 1.42s