Complete Question
The speed of a transverse wave on a string of length L and mass m under T is given by the formula

If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
Answer:

Explanation:
From the question we are told that
Speed of a transverse wave given by

Maximum Tension is 
Generally making
subject from the equation mathematically we have




Therefore the Linear mass in terms of Velocity is given by

An impulsive force is a force that is acting only during a short time, I mean, for an instant. Impulse is a physics magnitude define by the product of the impulsive force and the time that it was acting.
Is there any mistake in my English? Please, let me know.
Answer: William Thomson, better known as Lord Kelvin
Answer:

Explanation:
<u>Uniform Acceleration
</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
It's known a train moves from rest (vo=0) to a speed of vf=25 m/s in t=30 seconds. It's required to calculate the acceleration.
Solving for a:

Substituting:

