<h3>
Answer:</h3>
209.236 kg · m/s
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Physics</u>
<u>Momentum</u>
Momentum Formula: P = mv
- P is momentum (in kg · m/s)
- m is mass (in kg)
- v is velocity (in m/s)
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
m₁ = 87.2 kg
v₁ = 2.87 m/s
m₂ = 0.0520 kg
v₂ = 789 m/s
<u>Step 2: Find Momentums</u>
<em>Football Player</em>
- Substitute [MF]: P = (87.2 kg)(2.87 m/s)
- Multiply: P = 250.264 kg · m/s
<em>Bullet</em>
- Substitute [MF]: P = (0.0520 kg)(789 m/s)
- Multiply: P = 41.028 kg · m/s
<u>Step 3: Find difference</u>
- Define equation: P₁ - P₂
- Substitute: 250.264 kg · m/s - 41.028 kg · m/s
- Subtract: 209.236 kg · m/s
From the graph, it can be seen that the constant force that John exerted in order to move the object is 14N. Work is calculated by multiplying the force with the distance to which the object moves in parallel with the direction of the force.
Work = Force x displacement
Work = (14 N) x (8 m)
Work = 112 J
The closest value is 110J. Thus, the answer to this item is the second choice.
Answer:
We show added energy to a system as +Q or -W
Explanation:
The first law of thermodynamics states that, in an isolated system, energy can neither be created nor be destroyed;
Energy is added to the internal energy of a system as either work energy or heat energy as follows;
ΔU = Q - W
Therefore, when energy is added as heat energy to a system, we show the energy as positive Q (+Q), when energy is added to the system in the form of work, we show the energy as minus W (-W).