1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sashaice [31]
3 years ago
13

Captain John Stapp is often referred to as the "fastest man on Earth." In the late 1940s and early 1950s, Stapp ran the U.S. Air

Force's Aero Med lab, pioneering research into the accelerations which humans could tolerate and the types of physiological effects which would result. After several runs with a 185-pound dummy named Oscar Eightball, Captain Stapp decided that tests should be conducted upon humans. Demonstrating his valor and commitment to the cause, Stapp volunteered to be the main subject of subsequent testing. Manning the rocket sled on the famed Gee Whiz track, Stapp tested acceleration and deceleration rates in both the forward-sitting and backward-sitting positions. He would accelerate to aircraft speeds along the 1200-foot track and abruptly decelerate under the influence of a hydraulic braking system. On one of his most intense runs, his sled decelerated from 282 m/s (632 mi/hr) to a stop at -201 m/s/s. Determine the stopping distance and the stopping time.
Physics
2 answers:
Gemiola [76]3 years ago
6 0

Answer:Stopping Distance= 197.82 m

             Stopping time= 1.403 s

Explanation:

<u>Given that</u>:

  • initial velocity, u=282 ms^{-1}
  • acceleration, a= -201 ms^{-2}
  • final velocity, v= 0 ms^{-1} ∵ the body comes to the rest finally

<u>To find</u>:

  • Stopping time, t
  • stopping distance, s

From the given and asked data we identify the required equations of motion.

For calculating the stopping time: v=u+at ⇒ t=\frac{v-u}{t}

t=\frac{0-282}{-201} = 1.403 s

For calculating the stopping distance:

v^{2} =u^{2} +2as ⇒ s= \frac{v^{2} -u^{2} }{2a}

<em>putting the respective values</em>

s= \frac{0^{2}-282^{2}}{2(-201)} = 197.82 m

valentina_108 [34]3 years ago
4 0

Answer:

The sled needed a distance of 92.22 m and a time of 1.40 s to stop.

Explanation:

The relationship between velocities and time is described by this equation: v_f=v_0+a*t, where v_f is the final velocity, v_0 is the initial velocity, a the acceleration, and t is the time during such acceleration is applied.

Solving the equation for the time, and applying to the case: t=\frac{v_f-v_0}{a}=\frac{0\frac{m}{s}-282\frac{m}{s}  }{-201\frac{m}{s^2} }=1.40s, where v_f=0\frac{m}{s} because the sled is totally stopped, v_0=282\frac{m}{s} is the velocity of the sled before braking and, a=-201\frac{m}{s^2} is negative because the deceleration applied by the brakes.

In the other hand, the equation that describes the distance in term of velocities and acceleration:x_f-x_0=v_0*t+\frac{1}{2}*a*t^2, where x_f-x_0 is the distance traveled, v_0 is the initial velocity, t the time of the process and, a is the acceleration of the process.

Then for this case the relationship becomes: x_f-x_0=282\frac{m}{s} *1.40s+\frac{1}{2}(-201\frac{m}{s})*(1.40s)^2=94.22m.

<u>Note that the acceleration is negative because is a braking process.</u>

You might be interested in
Using this formula a = F/m What acceleration results from exerting a 125N force on a 0.65kg
Softa [21]

Answer:

Acceleration = 192.3 m/s² (Approx.)

Explanation:

Given:

Force = 125 N

Mass of ball = 0.65 kg

Find:

Acceleration

Computation:

We know that;

Acceleration = Force / Mas

So,

Acceleration = 125 / 0.65

Acceleration = 192.3 m/s² (Approx.)

5 0
3 years ago
A scientist wants to measure the relationship between humidity in the
ICE Princess25 [194]

Answer:

D

Explanation:

<em>The most suitable testable question. in this case, would be that 'are there more home runs during the more humid months of the  summer?'</em>

Since the aim of the investigation is to find the relationship between humidity and the number of home runs, measuring the number of home runs during the more humid months in the summer and comparing the data to the number of home runs during the less humid months in the same summer would provide the answer.

<u>Only option D raises a valid question that is relevant to the aim of the investigation.</u>

7 0
3 years ago
A hot air balloon has a volume of 65,00 cubic feet of hot air. The balloon is at sea level on a standard day. If the temperature
seraphim [82]
If you heat that air by 100 degrees F, it weighs about 7 grams less. Therefore, each cubic foot of air contained in a hot air balloon can lift about 7 grams. That's not much, and this is why hot air balloons are so huge -- to lift 1,000 pounds, you need about 65,000 cubic feet of hot air.
6 0
3 years ago
What’s the equalibrium rule?
ale4655 [162]
The vector sum of forces acting on a non-accelerating object equals zero.
equation form: ΣF = 0
4 0
3 years ago
Read 2 more answers
On an unknown planet in the outer-reaches of the solar system, a pendulum with a 12 g bob and a string length of 4 m oscillates
11Alexandr11 [23.1K]

The acceleration due to gravity (g) on this planet is 39.44 m/s²

<h3>What is solar system?</h3>

Solar system consists of all the planets and the most importantly the center of the solar system is Sun.

Given is an unknown planet in the outer-reaches of the solar system, a pendulum with a 12 g bob and a string length of 4 m oscillates with a period of 2 seconds.

The time period of the pendulum is

T = 2π √l/g

Squaring both sides, we get

l/g = T² / 4π²

g = 4π²l/ T²

Substitute Time period T = 2s and  length l = 4m,  we get

g = 4π²x 4/ 2²

g =39.44 m/s²

Thus, the acceleration due to gravity on this planet is 39.44 m/s²

Learn more about solar system.

brainly.com/question/12075871

#SPJ1

3 0
2 years ago
Other questions:
  • Calculate the wavelength of the electromagnetic radiation required to excite an electron from the ground state to the level with
    5·2 answers
  • Suppose that you lift four boxes individually, each at a constant velocity. The boxes have weights of 3.0 N, 4.0 N, 6.0 N, and 2
    10·1 answer
  • Which of the following is the most effective relaxation technique?
    11·2 answers
  • a student uses a simple machine to help lift a load.when 40N of input force is applied to the machine it is able to lift 160N .w
    10·1 answer
  • A 1.00 kg object is attached to a horizontal spring. the spring is initially stretched by 0.500 m, and the object is released fr
    5·1 answer
  • What happens to the current in a circuit when the resistance is increased
    13·1 answer
  • Why might people be able to walk barefoot on hot coals of wood without burning their feet?
    16·2 answers
  • A transformed, visible pattern that holds cues indicating the presence of a particular ethnic group is ____
    13·1 answer
  • No+plants+no+living+things,+no+living+things+no+plants.+Justify+
    5·1 answer
  • Compare the densities of two objects that have the same volume, but one feels heavier than the other.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!