Answer:
Second image in your list of possible answers
Explanation:
The second option is what you would expect from modulating a sinusoidal carrier wave of higher frequency after being modulated by a square pulse of lower frequency that allows part of the carrier signal to travel during the time the square signal is constant different from zero, and be absent (flat) during the time the square pulse signal has amplitude zero.
Answer:
states that the incident ray, the reflected ray, and the normal to the surface of the mirror all lie in the same plane. Furthermore, the angle of reflection is equal to the angle of incidence . ... This type of reflection is called diffuse reflection, and is what enables us to see non-shiny objects.
Explanation:
Real, inverted and at the same point of the object
Answer:
Explanation:
Force = q ( v x B)
- 5.6 x 10⁻⁹ (v x - 1.25 k )
- 3.4x 10⁻⁷i + 7.4 x 10⁻⁷j
Let v = ai+bj +ck
Force = - 5.6 x 10⁻⁹ [(ai+bj +ck) x - 1.25 k )]
= - 5.6 x 10⁻⁹ ( 1.25aj - 1.25bi )
= - 7 a j + 7 b i
( 7bi - 7aj ) x 10⁻⁹
Comparing with given force
7b x 10⁻⁹ b = - 3.4 x 10⁻⁷
b = - 48.57
- 7 a x 10⁻⁹ = 7.4 x 10⁻⁷
a = - 105.7
velocity
= -105.7 i - 48.57 j + ck
b ) Component along k can not be obtained .
c ) v . F = ( -105.7 i - 48.57 j + ck ) . −(3.40×10−7N) ˆı +(7.40×10−7N) ˆȷ
= 105.7 x 3.4 x 10⁻⁷ - 48.57 x 7.4 x 10⁻⁷
= 359.38 x 10⁻⁷ - 359.38 x 10⁻⁷
=0
angle between v and F = 90 degree
The force ffrom the ground that holds the rock up and prevents her from falling through the gound, unless the ground breaks.