1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flauer [41]
3 years ago
11

A skier starts from rest down a slope 500.0 M long, the skier accelerates at a constant rate of 2.00 m/s/s, what's the velocity

of the skier at the bottom of the hill
Physics
1 answer:
nevsk [136]3 years ago
8 0
We can use the kinematic equation
(v_f)^2 = (v_i)^2 + 2*a*d
where Vf is what we are looking for
Vi is 0 since we start from rest
a is acceleration
and d is the distance

we get
(Vf)^2 = (0)^2 + 2*(2)*(500)
(Vf)^2 = 2000
Vf = about 44.721
or 44.7 m/s   [if you are rounding this by significant figures]
You might be interested in
On my bike I was able to travel 40 miles in one hour from this information we can determine the bikes
valentinak56 [21]
You have a distance and a time so you can work out the bikes speed which would be distance/time so 40mph.
4 0
3 years ago
(a) (i) Find the gradient of f. (ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rat
vitfil [10]

Question:

Problem 14. Let f(x, y) = (x^2)y*(e^(x−1)) + 2xy^2 and F(x, y, z) = x^2 + 3yz + 4xy.

(a) (i) Find the gradient of f.

(ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rate is f decreasing?

(b) (i) Find the gradient of F.

(ii) Find the directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k.

Answer:

The answers to the question are

(a) (i)  the gradient of f =  ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) The direction in which f decreases most rapidly at the point (1, −1), ∇f(x, y) = -1·i -3·j is the y direction.

The rate is f decreasing is -3 .

(b) (i) The gradient of F is (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k is  ñ∙∇F =  4·x +⅟4 (8-3√3)y+ 9/4·z at (1, 1, −5)

4 +⅟4 (8-3√3)+ 9/4·(-5) = -6.549 .

Explanation:

f(x, y) = x²·y·eˣ⁻¹+2·x·y²

The gradient of f = grad f(x, y) = ∇f(x, y) = ∂f/∂x i+  ∂f/∂y j = = (∂x²·y·eˣ⁻¹+2·x·y²)/∂x i+  (∂x²·y·eˣ⁻¹+2·x·y²)/∂y j

= ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) at the point (1, -1) we have  

∇f(x, y) = -1·i -3·j  that is the direction in which f decreases most rapidly at the point (1, −1) is the y direction.  

The rate is f decreasing is -3

(b) F(x, y, z) = x² + 3·y·z + 4·x·y.

The gradient of F is given by grad F(x, y, z)  = ∇F(x, y, z) = = ∂f/∂x i+  ∂f/∂y j+∂f/∂z k = (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2·i + 3·j −√3·k

The magnitude of the vector 2·i +3·j -√3·k is √(2²+3²+(-√3)² ) = 4, the unit vector is therefore  

ñ = ⅟4(2·i +3·j -√3·k)  

The directional derivative is given by ñ∙∇F = ⅟4(2·i +3·j -√3·k)∙( (2·x+4·y)i + (3·z+4·x)j + 3·y·k)  

= ⅟4 (2((2·x+4·y))+3(3·z+4·x)- √3∙3·y) = 4·x +⅟4 (8-3√3)y+ 9/4·z at point (1, 1, −5) = -6.549

8 0
3 years ago
An object’s motion remains constant when acted upon by what?
igomit [66]

Answer:

An outside force

Explanation:

Newton's law an object in motion stays in motion an object at rest stays at rest unless acted on by an outside force.

6 0
2 years ago
Which vector should be negative?
pentagon [3]

Answer:

 The velocity of a falling object

Explanation:

  The positive X axis is towards right and positive Y axis is towards up, so North direction is positive

  A vector with less than 1 magnitude is not negative, because its magnitude may be in between 0 and 1 which is positive vector.

  Any vector whose magnitude is greater than 1 is never be a negative vector.

  The velocity of a falling object is towards bottom, that is towards negative Y axis. So that vector is negative.

7 0
3 years ago
A JFET has a drain current of 5mA. If IDSS = 10mA and VGS ( off )= -6 v. find The Value Of
levacccp [35]

\underline {\huge \boxed{ \sf \color{skyblue}Answer :  }}

<u>Given :</u>

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  I_{D} = 5mA

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  I_{DSS} = 10mA

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  V_{GS(off)} = -6V

\:  \:

\tt \large {\color{purple}     ↬ }  \:  \:  \:  \:  \:  V_{GS} =   {?}

\:  \:  \:

<u>Let's Slove :</u><u> </u>

  • \tt \large  I_{D} = I_{(DSS)}  (1 -   \frac {V_{GS}}{V_{GS(off)}} )^{2}

\:  \:  \:

  • \tt \large \: V_{GS} = (1 -  \frac{ \sqrt{I_D} }{ \sqrt{I_{DSS}} } ) \times  V_{GS(off)}

\:  \:  \:

  • \tt \large \: V_{GS} = (1 -  \frac{ \sqrt{5m} }{ \sqrt{10m} } ) \times  { - 6}

\:  \:

  • \underline \color{red} {\tt \large \boxed {\tt V_{GS} = 1.75 ✓}}
3 0
1 year ago
Other questions:
  • An ___ wave carries energy through matter
    10·1 answer
  • An auto, starting from rest, undergoes constant acceleration and covers a distance of 1200 meters. The final speed of the auto i
    15·1 answer
  • Choose the correct answer to complete the thought. Someone who studies the physics of sound waves is a(an)______.
    12·1 answer
  • A box has a length of 20.0 cm, a width of 25.0 cm and its 30 cm tall. What is its volume using correct significant figures
    7·1 answer
  • Blood pressure is usually measured by wrapping a closed air-filled jacket equipped with a pressure gage around the upper arm of
    15·1 answer
  • Without effective assessment methods, teachers have no documented proof of childrens specific ____ and _____.
    9·1 answer
  • Suppose you have two meter sticks, one made of steel and one made of invar (an alloy of iron and nickel), which are the same len
    15·1 answer
  • How many bonds can a carbon atom form
    11·2 answers
  • Which term is defined as the ratio of the speed of light in a vacuum to the speed of light in the material it is passing through
    5·1 answer
  • Properties of helium
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!