The answer to this is solved through stochiometry: the answer is this: 0.0833mol
Answer:
Option B, aspirin’s ester group provides greater digestibility to aspirin
Explanation:
Aspirin ester group has three parts
- carboxylic acid functional group (R-COOH)
- ester functional group (R-O-CO-R')
- aromatic group (benzene ring)
Aspirin is a weak acid and hence it cannot dissolve in water readily. The reaction of Aspirin ester group with water is as follows -
aspirin
(acetylsalicylic acid) + water → salicylic acid + acetic acid
(ethanoic acid)
Aspirin passes through the stomach and remains unchanged until it reaches the intestine where it hydrolyses ester to form the active compound.
Speed is calculated using the formula distance divided by time. For a distance of 26.2 miles, and a time of 3 hours and 40 minutes, we first convert the time to make it solely in terms of hours. 40 minutes is 2/3 of an hour, so this is a total time of 3 2/3 or 11/3 hours. If we divide 26.2 miles by 11/3 hours, we get a resulting speed of 7.14 miles/hour.
The temperature of the gas sample is 813 K.
<u>Explanation:</u>
We have to use the ideal gas equation to find the temperature of the gas sample.
The ideal gas equation is PV = nRT
Pressure, P = 429 mm Hg = 0.56 atm
Volume, V = 560 mL = 0.56 L
R = gas constant = 0.08205 L atm mol⁻¹K⁻¹
Mass = 0.211 g
Molar mass of carbon di oxide = 44.01 g / mol
Moles, n = 
= 0.0047 mol
Now, we have to plugin the above values in the above equation, we will get the temperature as,

T = 
= 813 K
So the temperature of the gas sample is 813 K.
<h3>Answer:</h3>
Cyclopentane (C5H10)
<h3>Explanation:</h3>
The molar mass of CH2 is about 14.3, Since empirical is a ratio just divide the given molar mass by the molar mass of the empirical. 70.15/14.3=5 So now multiple everything by 5 in the empirical equation.
So, a compound that has an empirical formula of CH2 and a molar mass of 70.15 will have molecular formula of" C5H10".