Strong alien you got there good luck bud you never asked a question
Answer:
Earth would continue moving by uniform motion, with constant velocity, in a straight line
Explanation:
The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:
"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"
This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.
In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.
Answer:
720 V
Explanation:
Given that,
The number of turns in primary coil, N₁ = 60
The number of turns in secondary coil, N₂ = 360
The input rms voltage, V₁ = 120 V
We need to find the output rms voltage of the secondary coil
. The relation between number of turns in primary coil - secondary coil to the input rms voltage to the output rms voltage is given by :

<h3>So, the output rms voltage of the secondary coil is 720 V. Hence, the correct option is (b).</h3>
Answer: false.
Explanation:
Doppler effect is caused to the relative motion of the source of light/sound with respect to the observer.
If the source is moving towards you, you will perceive the frequency to be larger (also called a blue shift), while if the wave is moving away, you will perceive the frequency to be smaller (also called a red shift).
Then the statement:
"Doppler effect is caused by sound or light wave being pushed together and spread apart due to motion."
Is false
<h2>Isaac Newton's First Law of Motion states, "A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force." What, then, happens to a body when an external force is applied to it? That situation is described by Newton's Second Law of Motion. </h2><h2>
equation as ∑F = ma
</h2><h2>
</h2><h2>The large Σ (the Greek letter sigma) represents the vector sum of all the forces, or the net force, acting on a body. </h2><h2>
</h2><h2>It is rather difficult to imagine applying a constant force to a body for an indefinite length of time. In most cases, forces can only be applied for a limited time, producing what is called impulse. For a massive body moving in an inertial reference frame without any other forces such as friction acting on it, a certain impulse will cause a certain change in its velocity. The body might speed up, slow down or change direction, after which, the body will continue moving at a new constant velocity (unless, of course, the impulse causes the body to stop).
</h2><h2>
</h2><h2>There is one situation, however, in which we do encounter a constant force — the force due to gravitational acceleration, which causes massive bodies to exert a downward force on the Earth. In this case, the constant acceleration due to gravity is written as g, and Newton's Second Law becomes F = mg. Notice that in this case, F and g are not conventionally written as vectors, because they are always pointing in the same direction, down.
</h2><h2>
</h2><h2>The product of mass times gravitational acceleration, mg, is known as weight, which is just another kind of force. Without gravity, a massive body has no weight, and without a massive body, gravity cannot produce a force. In order to overcome gravity and lift a massive body, you must produce an upward force ma that is greater than the downward gravitational force mg. </h2><h2>
</h2><h2>Newton's second law in action
</h2><h2>Rockets traveling through space encompass all three of Newton's laws of motion.
</h2><h2>
</h2><h2>If the rocket needs to slow down, speed up, or change direction, a force is used to give it a push, typically coming from the engine. The amount of the force and the location where it is providing the push can change either or both the speed (the magnitude part of acceleration) and direction.
</h2><h2>
</h2><h2>Now that we know how a massive body in an inertial reference frame behaves when it subjected to an outside force, such as how the engines creating the push maneuver the rocket, what happens to the body that is exerting that force? That situation is described by Newton’s Third Law of Motion.</h2><h2 />