Answer:
Δt'/ T% = 90.3%
Explanation:
Simple harmonic movement is described by the expression
x = A cos (wt)
we find the time for the two points of motion
x = - 0.3 A
-0.3 A = A cos (w t₁)
w t₁ = cos -1 (-0.3)
remember that angles are in radians
w t₁ = 1.875 rad
x = 0.3 A
0.3 A = A cos w t₂
w t₂ = cos -1 (0.3)
w t₂ = 1,266 rad
Now let's calculate the time of a complete period
x= -A
w t₃ = cos⁻¹ (-1)
w t₃ = π rad
this angle for the forward movement and the same time for the return movement in the oscillation to the same point, which is the definition of period
T = 2 t₃
T = 2π / w s
now we can calculate the fraction of time in the given time interval
Δt / T = (t₁ -t₂) / T
Δt / T = (1,875 - 1,266) / 2pi
Δt / T = 0.0969
This is the fraction for when the mass is from 0 to 0.3, for regions of oscillation of greater amplitude the fraction is
Δt'/ T = 1 - 0.0969
Δt '/ T = 0.903
Δt'/ T% = 90.3%
Kinetic energy. thermal energy (a low form of energy ) is a form of kinetic energy as it is produced as a result of motion of particles either if they vibrate at their position or they move along longer paths. Motion produces friction or resistance which leads to excitation and thus the heat is produced. The higher the motion of the particles, the higher would be the thermal energy.