Answer:
A. Power = Work / Time
Explanation:
Power is the amount of work done over time, or rather the rate of work, which is given by the unit of watts (W). Since work is defined by Force * Displacement, we can also say Power = Force * Displacement / Time.
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
The Nucleus contains Protons and Neutrons.
The Neutrons does not have a charge.
The Protons are positively charge.
Hence the charge on the Nucleus, would be the charge of the proton, which is positive.
Hence Nucleus is Positively Charged.
Answer:
mass of the neutron star =3.45185×10^26 Kg
Explanation:
When the neutron star rotates rapidly, a material on its surface to remain in place, the magnitude of the gravitational acceleration on the central material must be equal to magnitude of the centripetal acc. of the rotating star.
That is

M_ns = mass odf the netron star.
G= gravitational constant = 6.67×10^{-11}
R= radius of the star = 18×10^3 m
ω = 10 rev/sec = 20π rads/sec
therefore,

= 3.45185... E26 Kg
= 3.45185×10^26 Kg