Answer:
a) The strength of gravity decreases if one moved away from Jupiter
b) The strength of gravity increases if one fell into Jupiter
Explanation:
The gravitational attraction is given by Newton law of gravitation as follows;

Where;
G = The universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)
M = The mass of Jupiter
m = The mass of the nearby body
R = The distance between the centers of Jupiter and the body
From the equation, we have that the gravitational strength varies inversely with the square of the separation distance between two bodies
Therefore, as one moves away, R increases, and the strength of gravity reduces
Similarly as the body falls into Jupiter, R, reduces the gravitational strength increases.
Answer:
(a) Angular acceleration is 1.112 rad/s².
(b) Average angular velocity is 2.78 rad/s .
Explanation:
The equation of motion in Rotational kinematics is:
θ = θ₀ + 0.5αt²
Here θ is angular displacement at time t, θ₀ is angular displacement at time t=0, t is time and α is constant angular acceleration.
(a) According to the problem, θ is 13.9 rad, θ₀ is zero as it is at rest and t is 5 s. Put these values in the above equation:
13.9 = 0 + 0.5α(5)²
α = 1.112 rad/s²
(b) The equation of average angular velocity is:
ω = Δθ/Δt
ω = 
ω = 2.78 rad/s
Answer:
Range of wavelength will be
to 
Explanation:
We have given range of frequency is 400-560 Hz
Speed of the light 
We have to find the range of the wavelength of signal transmitted
Ween know that velocity is given by
, here
is wavelength and f is frequency
So for 400 Hz frequency wavelength will be 
And wavelength for frequency 560 Hz 
So range of wavelength will be
to 
Answer:

Explanation:
Acceleration is given by

where
u is the initial velocity
v is the final velocity
t is the time interval
In this problem:
is the initial velocity
is the final velocity
t = 2 s is the time
Substituting, we find the acceleration:
