Answer:5 to the 7th power
Explanation:
Divided 7 and y then add 4
Answer:

Explanation:
Hello!
In this case, since the equation we use to model the heat exchange into the calorimeter and compute the heat of reaction is:

We plug in the mass of water, temperature change and specific heat to obtain:

Now, this enthalpy of reaction corresponds to the combustion of propyne:

Whose enthalpy change involves the enthalpies of formation of propyne, carbon dioxide and water, considering that of propyne is the target:

However, the enthalpy of reaction should be expressed in kJ per moles of C3H4, so we divide by the appropriate moles in 7.00 g of this compound:

Now, we solve for the enthalpy of formation of C3H4 as shown below:

So we plug in to obtain (enthalpies of formation of CO2 and H2O are found on NIST data base):

Best regards!
Answer:
0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O₃: 2 moles
You can apply the following rule of three: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, 0.15 moles of Fe produce how many moles of Fe₂O₃?

moles of Fe₂O₃= 0.075
<u><em>0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.</em></u>
Mitochondria because is the power house for cell,site for respiration or energy release.
Answer:
i. Molar mass of glucose = 180 g/mol
ii. Amount of glucose = 0.5 mole
Explanation:
<em>The volume of the glucose solution to be prepared</em> = 500 
<em>Molarity of the glucose solution to be prepared</em> = 1 M
i. Molar mass of glucose (
) = (6 × 12) + (12 × 1) + (6 × 16) = 180 g/mol
ii.<em> mole = molarity x volume</em>. Hence;
amount (in moles) of the glucose solution to be prepared
= 1 x 500/1000 = 0.5 mole